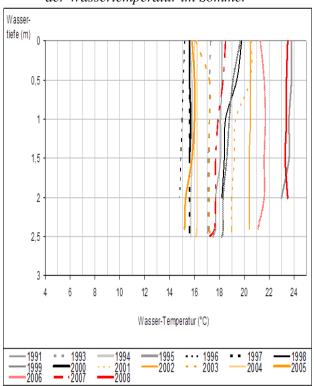
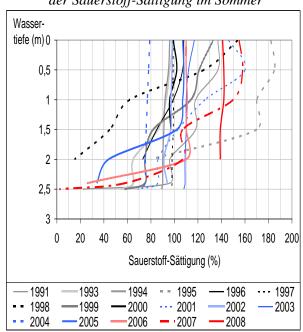
Trenter See


Gewässersystem	Schwentine
Einzugsgebiet (km²)	1,0
Uferlänge (km)	2,2
Wasserfläche (km2)	0,13
Mittlere Tiefe (m)	1,5
Maximale Tiefe (m)	3,0
Theoret. Erneuerungszeit	0,9 Jahre

Auswertung 1991-2010: Edith Reck-Mieth

Temperatur–Profile (Abb.1)

Der Trenthorster See stellt ein ungeschichtetes Flachgewässer dar und zeigt im Sommer keine **Temperaturschichtung**. Die Wassertemperaturen liegen zwischen 15,2 °C (September 1996) und 23,5°C (Juni 2001u. 2006) und sind nur im Juli 1995 und 2008 mit 23,8 °C deutlich höher. Über dem Sediment werden Temperaturen zwischen 14,8°C (1996) und 18,9°C (2001) sowie 1995 und 2008 Extremwert von 23°C (1995) erfasst


Abb.1: Vertikal-Profile der Wassertemperatur im Sommer

Sauerstoff-Profile (Abb.2)

Das oberflächennahe Wasser ist im September 1991 (maximal 137 %), Anfang August 1998 (154 %), Juli 1999, 2007und 2008 (133 – 155 %) und Juni 2001(160%) mit Sauerstoff **übersättigt**, wobei in diesen Fällen der Sauerstoffgehalt schon in 0,5m bis 1,5m Tiefe stark zurückgeht. Im Juli 1995 werden bis 1,5 m Tiefe Werte von 170-185 % gemessen.,im Juli 2008, im Juli 2008 findet sich in der gesamten Wassersäule eine Übersättigung von ca. 140 %. Im September 1994 und 1997, sowie im Juni 2003 herrschen in der gesamten Wassersäule **ausgeglichene Sauerstoffbe-**

Abb.2: Vertikalprofile der Sauerstoff-Sättigung im Sommer



dingungen mit Werten zwischen 90% und 110%. Bei den anderen Terminen wird über Grund eine **Untersättigung** (22-58 %) angetroffen. Im Jahre 2004 zeigt sich innerhalb der gesamten Wassersäule eine Untersättigung von 79% bis 69%.

Nährstoffe und weitere chemische Parameter

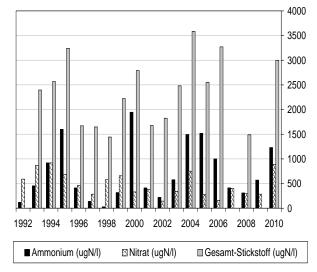

Die **Phosphor-Gehalte** zeigen während des gesamten Untersuchungszeitraumes Konzentrationsschwankungen auf hohem Niveau, beginnend mit 56 μg/l (1997) und mehrfacher Überschreitung von 200 μg/l (1995, 2006, 2009 und 2010). Das **Orthophosphat** zeigt in den Proben der Jahre 1995, 2000 und 2010 extrem hohe Konzentrationen über 100μgP/l, stellt jedoch in den anderen Jahren einen eher relativ geringen Anteil am Summenparameter **Gesamt-Phosphor**.

Abb.1: Phosphor-Konzentrationen (Herbst)

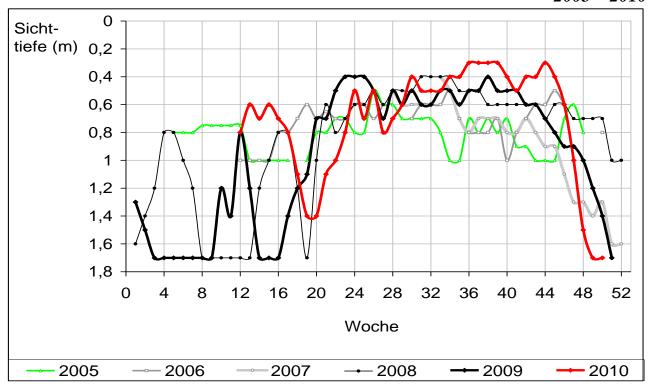
Die **Nitrat-Werte** bewegen sich in ähnlicher Weise mit relativ niedrigen Werten (159-590 μg/l) in 1992, 1997, 2000-2003 sowie 2005 - 2008) und hohen Werten (658-919μg/l) in 1993, 1994, 1999, 2004. und 2010. Die Gehalte an **Ammonium-Stickstoff** schwanken stärker und haben Minima (27-600μg/l) in 1992, 1997. 1998, sowie 2001, 2003, 2007 und 2008, Maxima (1500 bis 1950μg/l) in 1995, 2000, 2004 – 2006 sowie 2010. Parallel zu diesen Maxima übersteigen die Ammonium-Gehalte die Nitrat-Werte.

Abb.2: Stickstoff-Konzentrationen (Herbst)

Mit Werten von 18 bis 29 zeigt das N:P-Verhältnis (TN/TP) in den Proben der Jahre 1993, 1996, 1997, 1999 und 2000 Phosphorlimitierung an. In den weiteren Jahren liegt keine Limitierung vor. Die pH-Werte variierten beträchtlich (6,9-8,4). Die Leitfähigkeit

Abb.3: Chemische Parameter (Herbst)

Jahr	рН	Leitf DOC		TN/TP
		uS/cm	mg C/I	
1993	7,8	421	9,3	21
1994	7,6	436	7,3	17
1995	7,8	462	6,1	14
1996	7,9	405	5,7	22
1997	8,2	415	6,6	29
1998	8,4	383	4,8	17
1999	8,1	378	7,2	18
2000	7,7	412		19
2001	8,1	403	8,6	24
2002	8,3	376	11,4	14
2003	7,8	397	14,0	30
2004	7,4	422	10,1	37
2005	7,7	417	11,0	22
2006	7,7	394	17,4	15
2007	7,9	425		
2008	8,0		9,4	12
2009		428		
2010	7,7	460		12
Mittel	7,9	414	9,3	20


variiert im Untersuchungszeitraum zwischen 363 (2008) und 462 μS/cm (1995). Die Konzentration an **gelöstem organischen Kohlenstoff (DOC**) nimmt seit *2001* zu und erreicht *2006* einen herrausragend hohen Wert. Bei den **Calcium-Gehalten** (65,4-72,1 mg/l), von 1993 bis 2000 erfasst, ist keine Zu- oder Abnahme zu erkennen.

Sichttiefen

Die Sichttiefen werden in Abhängigkeit von der Wassertrübung entweder vom Steg oder vom Boot aus gemessen. Aus den Jahren 1992 und 1993 gibt es keine Sichttiefen-Daten und aus dem Jahr 1991 keine ausreichenden Daten aus der Sommerperiode. Die mittleren **Frühjahrs-Sichttiefen** schwanken zwischen 0,6 m und 1,3m.. Ein **Klarwasserstadium** gib es nur in den Jahren 1995 (1,8m), 2001 (1,2m), 2002 (1,1m), 2008 (1,7m) und 2010 (1,4m). Die mittleren **Sommer-Sichttiefen**, die im Zeitraum von 1997 bis 2006 zwischen 0,7 m und 0,9 m liegen, nehmen ab und erreichen ab 2008 nur noch 0,5m.

Abb.7: Saisonaler Verlauf der Sichttiefen im Jahresgang

2005 – 2010

1991 - 2005

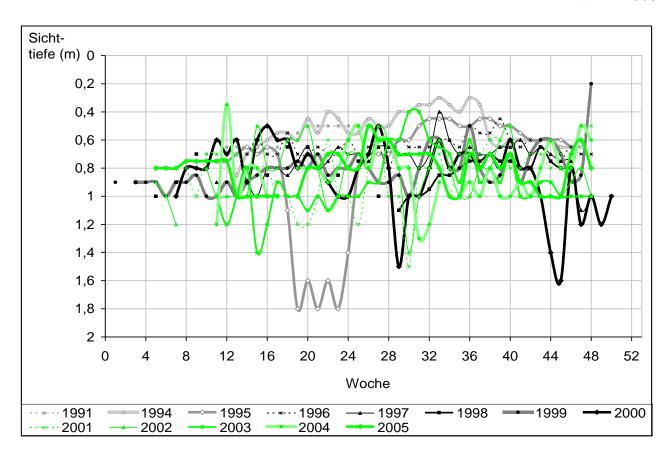
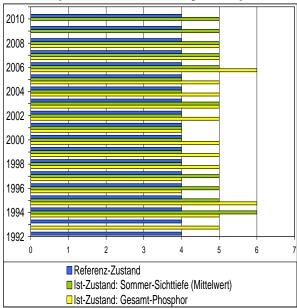


Abb.4:Saisonale Sichttiefen


	Klarwasserstadium		Frühj.	Sommer	Herbst
	Start	max. ST(m)	mittl. ST	mittl. ST	mittl. ST
Jahr	Woche	Woche (W)	(m)	(m)	(m)
1991			0,6		
1992					
1993					
1994			0,6	0,4	0,6
1995	18	1,8 (21)	0,7	0,5	0,6
1996			0,7	0,6	0,7
1997			0,8	0,7	0,8
1998			0,7	0,9	0,8
1999			0,8	0,8	0,7
2000			0,6	0,8	1,0
2001	17	1,2 (19)	0,9	0,8	0,7
2002	21	1,1 (22)	0,8	0,8	0,9
2003			1,1	0,7	0,9
2004			0,8	0,8	0,8
2005			0,9	0,8	0,8
2006			0,8	0,7	0,7
2007				0,6	1.0
2008	18	1,7 (19)	1,2	0,5	0,6
2009			1,3	0,5	0,7
2010	18	1,4 (19)	0,7	0,5	0,6

Die mittleren Herbst-Sichttiefen zeigen 1994 und 1995 sowie 2008 und 2010 mit 0,6 m ihren Niedrigstwert. Der Höchstwert von 1 m wird 2000 sowie 2007 erreicht.

Trophiegrad und Bewertung

häufig sehr hohen Sauerstoff-Übersättigungen in der Oberflächenschicht oder der in der gesamten Wassersäule, der in einigen Jahren hohe Phosphor-Gehalt sowie die geringen Sommer-Sichttiefen zeigen einen hohen Trophiegrad an. Nach der LA-WA-Richtlinie für ungeschichtete Seen (Tiefengradient: 0,42) liegen die Phosphor-Werte seit 2002 im Bereich polytroph 1 oder im Bereich eutroph 2. Die mittleren Sommer-Sichttiefen liegen 1994 und 1995 bei polytroph 2 (0,4-0,5 m) und verschieben sich in den Jahren bis 2007 (Ausnahmen 1998 und 2004: eutroph 2 (0,9m)).. nach polytroph 1 (0,6-0,8m). Ab 2008 verschlechtert sich de Trophiegrad wieder auf polytroph 2. Nach den Durchschnittswerten ergibt sich für den Trenter See als Ist-Zustand die Stufe polytroph1. Der Referenzzustand ist eutroph 2 und seine Bewertungsstufe daher 3.

Abb.5: Abweichung des Ist-Zustandes vom Referenz-Zustand in Trophie-Stufen 1-7

M1:Tendenz 1991 - 2005						
Frühj. ST	So. St	H. ST	Phosphor	Stickstoff		
A	_	A	_	A		

Zusammenfassung Trenter See

- Ungeschichteter Flachsee
- Starke Sauerstoff-Übersättigungen
- Sauerstoffmangel über Grund
- Anstieg der Phosphor- und Schwankungen der Nitrat- und Ammonium-Gehalte
- Klarwasserstadium nur in fünf Jahren
- Schwankungen der Frühjahrssichttiefen
- Abnahme der Sommer-Sichttiefen
- Ist-Zustand polytroph 1, Referenzzustand eutroph 2, Bewertungsstufe 3